TATA box binding protein induces structure in the recombinant glucocorticoid receptor AF1 domain.
نویسندگان
چکیده
A number of transcription factor proteins contain domains that are fully or partially unstructured. The means by which such proteins acquire naturally folded conformations are not well understood. When they encounter their proper binding partner(s), several of these proteins adopt a folded conformation through an induced-fit mechanism. The glucocorticoid receptor (GR) is a ligand-activated transcription factor. Expressed independently as a recombinant peptide, the N-terminal transactivation domain (AF1) of the GR shows little structure and appears to exist as a collection of random coil configurations. The GR AF1 is known to interact with other transcription factors, including a critical component of the general transcription machinery proteins, the TATA box binding protein (TBP). We tested whether this interaction can lead to acquisition of structure in the GR AF1. Our results show that recombinant GR AF1 acquires a significant amount of helical content when it interacts with TBP. These structural changes were monitored by Fourier transform infrared and NMR spectroscopies, and by proteolytic digestions. Our results support a model in which TBP binding interaction with the GR AF1 induces significantly greater helical structure in the AF1 domain. This increased helical content in the GR AF1 appears to come mostly at the expense of random coil conformation. These results are in accordance with the hypothesis that an induced-fit mechanism gives structure to the GR AF1 when it encounters TBP.
منابع مشابه
TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1
The precise mechanism by which glucocorticoid receptor (GR) regulates the transcription of its target genes is largely unknown. This is, in part, due to the lack of structural and functional information about GR's N-terminal activation function domain, AF1. Like many steroid hormone receptors (SHRs), the GR AF1 exists in an intrinsically disordered (ID) conformation or an ensemble of conformers...
متن کاملBinding-Folding Induced Regulation of AF1 Transactivation Domain of the Glucocorticoid Receptor by a Cofactor That Binds to Its DNA Binding Domain
Intrinsically disordered (ID) regions of proteins commonly exist within transcription factors, including the N-terminal domain (NTD) of steroid hormone receptors (SHRs) that possesses a powerful activation function, AF1 region. The mechanisms by which SHRs pass signals from a steroid hormone to control gene expression remain a central unresolved problem. The role of N-terminal activation functi...
متن کاملThe human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics.
The AR (androgen receptor) is a ligand-activated transcription factor and member of the steroid receptor superfamily. The AR responds to the ligands testosterone and dihydrotestosterone and activates multiple downstream genes required in development and reproduction. During the events of transactivation, the AR makes specific protein-protein interactions with several basal transcription factors...
متن کاملInfluence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry.
Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass-spectrometry-based investigation of TATA box-binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist...
متن کاملNaturally Occurring Osmolyte, Trehalose Induces Functional Conformation in an Intrinsically Disordered Activation Domain of Glucocorticoid Receptor
Intrinsically disordered (ID) regions are frequently found in the activation domains of many transcription factors including nuclear hormone receptors. It is believed that these ID regions promote molecular recognition by creating large surfaces suitable for interactions with their specific protein binding partners, which is a critical component of gene regulation by transcription factors. It h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 47 شماره
صفحات -
تاریخ انتشار 2004